

IMPROVEMENT OF TRANSMISSION, APPLYING CORK PAINT INSIDE HOUSES WITH SUBER-KOLMER INSULATION.

IMPROVEMENT OF TRANSMISSION, APPLYING SUBER- KOLMER CORK PAINT, IN THREE TYPES OF HOUSING

INDEX

ORDER AND BACKGROUND OF MATERIAL

METHODOLOGY FOLLOWED FOR THIS STUDY OF ENERGY EFFICENCY

THERMAL CONDUCTIVITY TEST OF MATERIAL

TECHNICAL SPECIFICATIONS OF ENCLOSURES WITH AND WITHOUT APPLICATION OF MATERIAL

CERTIFICATION OF ENERGY EFFICENCY IN THREE TYPES OF HOUSINGS

- PENTHOUSE APARTMENT IN THE CENTRE OF GRANADA CITY, YEAR 1970

- TWO STOREY TOWNHOUSE-HOUSES IN GRANADA, YEAR 2.000

- CURRENT WOODEN HOUSES. YEAR 2000

CONCLUSIONS AND RESULTS

PHOTOGRAPH OF THE MATERIAL APPLIED

BIBLIOGRAPHY

GRANADA 2013-2014

.

Study of Suber-Kolmer Transmission Material. Author: José J. G. Olmedo

ORDER AND BACKGROUND OF MATERIAL

The commission of the research and certification report of new insulating material from KOLMER, was carried out through its General Manager: Mr Angel Ruiz Contreras, dated December 12, 2013, and has a execution time from 8 January to 17 February 2014.

Through contract No. 3376, to provide services to the agency TTO (Technology Transfer Office of Research), University of Granada and the company KOLMER. Professor Dr. José Jesús Guardia Olmedo being responsible for the report

The study involved testing and certifying, the improvements of this new insulation, which is applied by spraying cork shavings, conveyed in support painting and applying several coats by compressor, and relatively thin (generally three coats, about three millimeters thick are given) on any support on the interior surfaces of houses.

The starting point is the result of the material tested in the laboratory of AIDICO (Building Technological Institute) in Paterna, Valencia, and these data of the improved energy transmission have been studied and certifies in three types of existing buildings: one of old building (1970 and before the legislation), and two other current dwellings (post-2006), based on CTE (Technical Building Code) regulatory legislation and UNE-EN, and ISO norms.

The implementation and certification of UNE-EN 16001 also takes into account because it allows cost savings and has a differentiating effect in comparison with other standards, and is compatible with the international standard ISO 50001 (under revision) of the Energy Management Systems, which soon will be released and made available for all countries.

This report consists of ///// 30 ///// pages..

METHODOLOGY FOLLOWED FOR THIS STUDY OF ENERGY EFFICENCY

For building, Directive 2002/91/EC on energy performance of buildings established guidelines to be followed in all European states.

In Spain, the transposition of this directive is carried out by 3 major regulatory actions:

-The new Regulation of Thermal Installations in Buildings (RITE)

-The procedure adopted in early 2007 on Building Energy Rating and

-The Technical Building Code (obligatory since September 2006) in this section on the basic requirement for energy saving (CTE HE).

And the technical instruments used for data collection were as follows:

- CTE (Technical Building Code)

-Construction Elements catalog CTE

-Energy Efficiency Program: CE-3 -.

-Royal Decree 235/2013 of April 5, approving the basic procedure for the Certification of Energy Efficiency in Buildings

-Regulations: UNE-EN and ISO.

.

THERMAL CONDUCTIVITY TEST OF MATERIAL

T/1/09/2013 ADDICO (INS. TECNOLOGICO CONSTRUCCION) YOS Inicio / Starting: 18/09/2013 Finalización / Ending: 24/09/2013 Parc Tecnologic, s/n - Apdo.98 ES-46980 PATERNA VALENCIA Att. JUAN VICENTE SABATER IÓN MUESTRAS REFERENCIADAS / SAMPLES REFERENCED: -"SUBER BY KOLMER".	DATE OF RECEPTION 17/09/2013 AIDICO (INS. TECNOLOGIC CONSTRUCCION) FECHA ENSAYOS DATE TEST Inicio / Starting: 18/09/2013 Finalización / Ending: 24/09/2013 DESCRIPCIÓN MUESTRAS REFERENCIADAS / SAMPLES REFERENCED:	98
YOS TEST Inicio / Starting: 18/09/2013 Finalización / Ending: 24/09/2013 Parc Tecnologic, s/n - Apdo.98 ES-46980 PATERNA VALENCIA MUESTRAS REFERENCIADAS / SAMPLES REFERENCED:	FECHA ENSAYOS DATE TEST Inicio / Starting: 18/09/2013 Parc Tecnologic, s/n - Apdo ES-46980 PATERNA VALENCIA Finalización / Ending: 24/09/2013 Parc Tecnologic, s/n - Apdo DESCRIPCIÓN E IDENTIFICACIÓN IE LAS MUESTRAS MUESTRAS REFERENCIADAS / SAMPLES REFERENCED: -"SUBER BY KOLMER".	
IÓN MUESTRAS REFERENCIADAS / SAMPLES REFERENCED: -"SUBER BY KOLMER". AND N OF	DESCRIPCIÓN E IDENTIFICACIÓN E LAS MUESTRAS DESCRIPTION AND IDENTIFICATION OF	ER
AND NOF	E LOENTIFICACIÓN E LAS MUESTRAS DESCRIPTION AND IDENTIFICATION OF	
AND N OF	DESCRIPTION AND IDENTIFICATION OF	
DOS DETERMINACIÓN DE LA RESISTENCIA Y CONDUCTIVIDAD TERMICA	DEALIZADOG DETERMINACIÓN DE LA RESISTENCIA I CONDUCTIVIDAD TERMIC	
DOS DETERMINACIÓN DE LA RESISTENCIA Y CONDUCTIVIDAD TERMICA DETERMINATION OF THE THERMAL RESISTANCE AND CONDUCTIVITY.	DETERMINATION OF THE THERMAL RESISTANCE AND CONDUCTIVITY.	

4

4

Study of Suber-Kolmer Transmission Material. Author: José J. G. Olmedo

	INFORME Nº REPORT Nº	2013AN1934
RESU	LTADOS / RESULTS	
DETERMINATION OF THE THERMAL	STENCIA Y CONDUCTIVIDAD	
Norma Standard		
UNE-EN 12667:2002, equivalente a E UNE-EN 12667:2002, equivalent to EN 12667:	EN 12667:2001 2001	
Método de ensayo utilizado Test method carried out		
Medidor de flujo de calor acorde con Heat flow meter according to standard ISO 830		
Equipo Equipment		
Medidor de flujo de calor de muestra Single specimen heat flow meter of horizontal d	única, en posición horizontal y plato ca prientation and hot plate in top level	liente en parte superior
dentificación de equipo Apparatus identification		
04129 I 12		
Método para reducir las pérdidas de Method to reduce the heat losse in the edges	calor en los extremos	
El propio material ensayado hace de Material itself reacts as an isolator	aislante	
Norma del producto aplicada Harmonised standard product applied		
Procedimiento de muestreo aplicado Sampling procedure applied	D	
MATERIAL A ENSAYAR TEST MATERIAL		
Características Characterístics	Información del cliente Customer information	Dato medio
Referencia Reference	SUBER BY KOLMER	
Especificaciones (composición) Product specifications (composition)	Corcho proyectado, según cliente	
Aplicación (uso final)	Project cork, according to client No facilitado por el cliente	Martin and Andrews
Application (final use) Densidad (kg/m ³)	Not provided by client 700 Kg/m³, según cliente	
Density	700 Kg/m³, according to client	
Masa superficial (kg/m²) Surface mass	No facilitado por el cliente Not provided by client	
Espesor total (mm) Total thickness	3, según cliente 3, according to client	
		>>>>
	PÁG.	2 DE 5
	PAGE	OF

		INFORME N° 201 REPORT N°	3AN1934
	RESULTADOS /	RESULTS	
Acondicionamie	ento de la muestra		
Sample conditioning	g ondicionan según punto 7.2.2 de la norma.		
Specimens are con	ditioned according standard point 7.2.2		
Determinación c Determination of the	le la resistencia y conductividad térm e thermal resistanse and conductivity	ica	
	liferencia de temperatura a través de l emperature diference through the specimen du		yo /
	Probeta / Specimen 1 Probeta / Specimen 2	14.98	
	Probeta / Specimen 2 Probeta / Specimen 3	15.00	
Temperatura	de consigna de ensayo / State temperati	re test (°C)	
	Probeta / Specimen 1 Probeta / Specimen 2	10.77	
	Probeta / Specimen 2 Probeta / Specimen 3	10.39	
	Probeta / Specimen 1	120.41	
	Probeta / specimen 2 Probeta / specimen 3	120.87 122.43	
Resistencia t			
Resistencia t	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) :	122.43	
Resistencia t	Probeta / Specimen 3		
Resistencia t	Probeta / Specimen 3 érmica / Thermal resistance (m ^{2, o} K/W) : Probeta / Specimen 1	0.1244	
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2	0.1244 0.1241 0.1226	
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3	0.1244 0.1241 0.1226	
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 1	0.1244 0.1241 0.1226 0.0933 0.0930	
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 dtérmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1	0.1244 0.1241 0.1226 0.0933	
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 dt térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 dt térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA R	0.1244 0.1241 0.1226 0.0933 0.0930	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 dt térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA R	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	DIA
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	,
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	,
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	,
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	122.43 0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME <i>Thermal resistance</i> 0.1237°K/W	,
	Probeta / Specimen 3 érmica / Thermal resistance (m ² .ºK/W) : Probeta / Specimen 1 Probeta / Specimen 3 ad térmica / Thermal conductivity (W/m.ºK) Probeta / Specimen 1 Probeta / Specimen 2 Probeta / Specimen 3 CONDUCTIVIDAD TÉRMICA MEDIA Thermal conductivity	0.1244 0.1241 0.1226 0.0933 0.0930 0.0938 ESISTENCIA TÉRMICA ME Thermal resistance	,

TECHNICAL SPECIFICATIONS OF THE COATING WITH AND WITHOUT THE APPLICATION OF THE MATERIAL

STUDY SHEETS TYPE IN DIFFERENT MATERIALS IN THE BUILDING COATING

SHEET: LOAD-BEARING WALL. Solid, one piece, without interior insulation

Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m ² K/Watts	Superficial Resistance, inside+ outside Ri+Re= 0.17	Transmission U Watts/m ² K	Observations: No insulation inside cavity
filled with	0.030	1.00	0.030			
mortar						
Solid	0.25	0.85	0.294			
brick						
Plaster	0.02	0.40	0.050			
			Addition: 0.374	0.544	1. 838	

Sheet: LOAD-BEARING WALL. Solid, one piece, and cork: SUBER-KOLMER projected inside:

Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m² K/Watts	Superficial Resistance, inside+ outside Ri+Re= 0.17	Transmission U Watts/m ² K	Observations: No insulation inside cavity
filled with mortar	0.03	1.0	0.030			
Solid brick	0.25	0.85	0.294			
Plaster	0.02	0.40	0.050			
Suber- Kolmer	0.003	0.093	0.032			
			Addition: 0.406	0.576	<u>1.736</u>	

In load-bearing wall of solid brick, the loss of value in the transmission coefficient is: U: 1'83- 1.73 = 0'667, with an approximate value of: 5.88 %, when Súber-Kolmer is projected inwards.

Material	Thickness meters	Conductivi Ty Watts/m K	Resistance m ² K/Watts Ri+Re= 0.17	Transmission U Watts/m ² K	Observati ons: No insulation inside cavity
filled with mortar	0.03	1.00	0.030		
Half brick wall	0.115	0.85	0.135		
Air	0.03	0.022	1.364		
H/D Brick	0.09	0.56	0.160		
Plaster	0.02	0.40	0.05		
			<u>∑</u> : 1´909	0.523	

<u>Sheet:</u> Cavity wall without insulation:

The Suber-Kolmer material decreases transmission (U = 0.047), through the cavity wall without inner insulation, fourteen eighty-one percent: (1'52 %).

In other enclosures of the cavity walls, with internal insulation: Polyurethane projected Transmission: U is decreased by 0.209 to 39.90%

Material	Thickness meters	Conductivity Watts/m K	Resistance m ² K/Watts Ri+Re= 0.17	Superficial Resistance, inside+ outside Ri+Re= 0.17	Transmission : U Watts/m ² K	Observations : No insulation inside in cavity
filled with mortar	0.03	1.000	0.030			
Half brick wall	0.115	0.850	0.135			
Air	0.03	0.022	1.364			
H/D brick	0.09	0.560	0.160			
Plaster	0.02	0.40	0.050			
Suber- Kolmer	0.003	0.093	0.032			
			<u>Σ</u> : 1′771	1´941	0.515	

Sheet: *Cavity walls without insulation* and projected SUBER-KOLMER:

Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m ² K/Watts	Superficial Resistance, inside+ outside Ri+Re=0.17	Transmission: U Watts/m ² K	Observations: No insulation inside the cavity
filled with mortar	0.03	1.000	0.030			
Half brick wall	0.115	0.850	0.135			
Insulation	0.050	0.040	1.250			
Aire	0.03	0.022	1.364			
H/D brick	0.09	0.560	0.160			
Plaster	0.02	0.40	0.050			
Suber- Kolmer	0.003	0.093	0.032			
			Addition: 3´017	3´180	0´314	

sheet : cavity walls with inside insulation and SUBER-KOLMER cork projected:

A value of approximately U: 44.5 % is lost with respect to the initial walls without inside insulation in the cavity

Data summary for closing the cavity walls with air chamber without inside insulation, with inside insulation and with Suber-Kolmer inside insulation

U: 0.503......STARTING DATUM......ZERO: (0%)

U: 0.515.....ONE POINT FIFTY THREE PER CENT: (1'53 %)

U: 0.314......THIRTY NINE POINT NINE PER CENT:(39'90%)

Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m ² K/Watts	Superficial Resistance, inside+ outside <i>Ri+Re= 0.14</i>	Transmission: U Watts/m ² K	Observations: insulation inside cavity
Covering	0.015	1.00	0.015			
with tiles						
Mortar	0.10	1.0	0.10			
H/D	0.09	0.37	0.243			
bricks						
Insulation	0.05	0.039	1.282			
Air	0.05	0.022	2.272			
Forged	0.250	0.830	0.300			
Plaster	0.02	0.40	0.050			
			Addition:	4.40	0.227	
			4.26			

Sheet: Covering roof with tiles, *without inside insulation*, WITHOUT PROJECTED CORK

Sheet : Covering roof with tiles, *with inside insulation*, WITH PROJECTED SUBER-KOLMER CORK

Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m ² K/Watts	Superficial Resistance, inside+ outside <i>Ri+Re= 0.14</i>	Transmission: U Watts/m ² K	Observations: No insulation inside the cavity
Covering	0.015	1.00	0.015			
with tiles						
Mortar	0.10	1.00	0.100			
H/D	0.09	0.550	0.243			
bricks						
Insulation	0.05	0.039	1.282			
Air	0.250	0.830	0.300			
Forged	0.05	0.022	2.272			
Plaster	0.02	0.40	0.050			
Suber-	0.003	0.093	0.032			
Kolmer						
			Addition: 4.292	4.432	0.225	

The covering of curved or terraced roofs, in zone c-3 of Granada, transmission values: U, must not be greater than $0'41W/m^2K$.

In consequence, without inside insulation and with insulation, it respects CTE

Material	Thickness meters	Conductivity ≠ Watts/m K	Resistance: R m² K/Watts	Superficial Resistance, inside+ outside <i>Ri+Re= 0.14</i>	Transmission: U Watts/m ² K	Observations: inside insulation in cavity
Ceramic	0.015	0.100	0.015			
covering						
Mortar	0.03	1.0	0.03			
H/D	0.09	0.550	0.163			
brick						
Insulation	0.05	0.039	1.282			
Forged	0.250	0.830	0.300			
Plaster	0.02	0.40	0.050			
			Addition: 1.84	1.98	0.505	

Sheet Flat Accessible roof, *with inside insulation* and WITHOUT projected cork

This does not meet the provisions of CTE, for zone C-3 of Granada

Sheet: Flat Accessible roof, *with inside insulation* and WITH projected cork

Material	Thickness meters	Conductivity ≠ Watts/m K	Resistance: R m² K/Watts	Superficial Resistance, inside+ outside <i>Ri+Re= 0.14</i>	Transmission: U Watts/m² K	Observations: insulation inside the cavity
Ceramic covering	0.015	1.00	0.015			
Mortar	0.03	1.0	0.03			
H/D brick	0.09	0.550	0.163			
Insulation	0.05	0.039	1.282			
Forged	0.250	0.830	0.300			
Plaster	0.02	0.40	0.050			
Suber- Kolmer	0.003	0.093	0.032			
			Addition: 1.872	2.012	0.497	

Pierde un valor de U: 0.505 -0.430 = de 0.075, resultando un: 14'86 %

LOAD BEARING WALL PINE WOOD average density: (0'5):

Sheet	Material	Thickn ess meters	Conductivity ≠ Watts/m K	Resistance: R m² K/Watts	Superficial Resistance, inside+ outside Ri+Re= 0.17	Transmission: U Watts/m ² K	Observations: No insulation inside the cavity wall
	Pine board	0.15	0.14	1.070			
	Plaster sheets	0.02	0.40	0.050			
				1. 120	1.29	0.775	Valor

LOAD BEARING WALL PINE WOOD average density: (0'5): and SUBER-KOLMER projected interior cork:

Sheet -	Material	Thickne ss meters	Conductiviity ≠ Watts/m K	Resistance: R m ² K/Watts	Superficial Resistance, inside+ outside Ri+Re= 0.17	Transmission: U Watts/m² K	Observations: No insulation inside the cavity wall
	Pine	0.15	0.14	1.070			
	board						
	Plaster	0.02	0.40	0.050			
	sheets						
	Suber-	0.003	0.0933	0′032			
	Kolmer						
				1′152	1′322	0′756	

Loss of Transmission, approximately 2'5 %, with cork.

CONCLUSIONS

In old buildings with solid walls, is where most transmission loss is noted, so it is most appropriate for replacement and thermally improved interior comfort.

The values being:

A value of 5.88 % for load-bearing walls of solid brick. From 1.53% to 39.90 % for cavity enclosures.

A lower value of 1.09 % % for pitched roofs, and flat roofs (without insulation which does not meet the CTE) .

A value of 19'87 % in enclosures with solid pine (medium density).

In general, BUILDINGS lose Transmission of approximately 14.40 % , AVERAGE , being a detached house with cork or not having it.

In load bearing walls of solid brick, the loss in the Transmission coefficient has a value close to 6%, when projected inside with Suber - Kolmer. In these cases the application of cork insulation is strongly recommended.

The Suber - Kolmer material, in a cavity without inner insulation, decreases Transmission U by thirty -nine percent (39%). The U values passing from 0'523 to 0'314.

In other cavities, with internal insulation of projected Polyurethane , the Transmission U decreases by 9%. The U values passing from 0'523to 0.515.

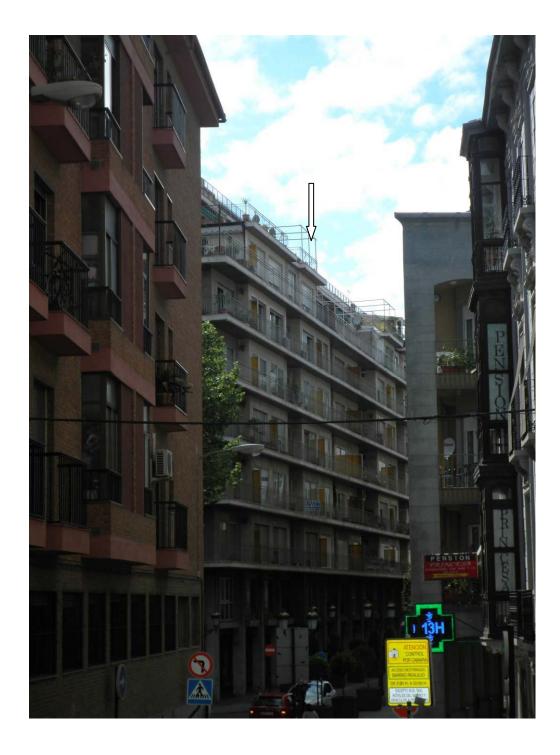
For wooden enclosures the values of U Transmission are: From a value of 0'775 to 0'621 dropping by 0'154, that is 19'87 %

With these data from the catalog of CTE Construction Elements , Energy Performance Certificate (EEC) , studying three cases of housing in Granada have been granted:

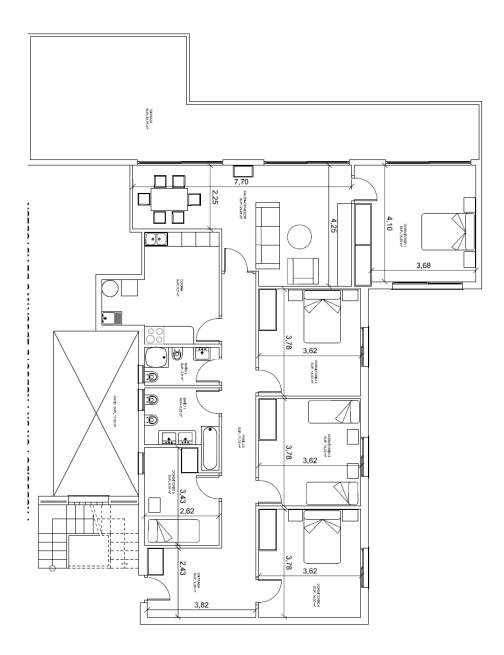
EXISTING CONSTRUCTION: Penthouse : Build 1970. EXISTING CONSTRUCTION: Semi-Detached House , built between 2000-2007. NON EXISTING CONSTRUCTION wood houses:, under new regulation.

Assuming that a closure of 120 mm in solid pine wood has a thermal transmission of 0.91 W/m2K, if we add 3 mm of EPS with thermal conductivity 0.038 W / mk, new thermal transmission becomes 0.85 W / m2 K. Although, in Granada, it will not comply with the Transmission, because it is small thicknesses without insulation, and with low thermal inertia, the projected materials will improve by 6'59 %

Although it is a good average value, because the thickness of the enclosure is small : 12 cm , when the section and the thickness of the insulation between the wood and the interior finish is increased, if the value of the Transmission is lowered, it now complies with area C of Granada and area E - 1 of the Alpujarra .


The countries which most use wood in buildings are : Scandinavians , Canada and North America, being therefore a highly recommended market to introduce this material, because of its versatility in application and improvement of thermal conditions inside houses . -

CERTIFICATION OF ENERGY EFFICENCY IN THREE TYPES OF HOUSINGS



PENTHOUSE IN CITY CENTER OF GRANADA, BUILT 1970S

FLOOR PLAN PENTHOUSE IN CITY CENTER OF GRANADA, 1970S

CERTIFICATION OF APARTMENT BUILDING PENTHOUSE IN GRANADA, 1.970S

CERTIFICADO DE EFICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES

IDENTIFICACIÓN DEL EDIFICIO O DE LA PARTE QUE SE CERTIFICA:

IDENTIFICACIÓN DEL EDIFICIÓ O DE LA FARTE QUE	JE CENTITICA.			
Nombre del edificio	PISO ÁTICO 8º G, EDIFICIO CERVANTES			
Dirección	Plaza del Campillo nº 5			
Municipio	Granada Código Postal 18005			
Provincia	Granada Comunidad Autónoma Andalucía			
Zona climática	C3 Año construcción 1970			
Normativa vigente (construcción / rehabilitación)	Anterior a la NBE-CT-79			
Referencia/s catastral/es	7044301VG4174C0088FM			

Tipo de e	dificio o parte del edificio que se certifica:	
Vivienda	0 Terciario	
o Unifamiliar	O Edificio completo	
Bloque	O Local	
o Bloque completo		
 Vivienda individual 		

DATOS DEL TÉCNICO CERTIFICADOR:

Nombre y Apellidos	José Jesús Guardia Olmedo		NIF		24280487	
Razón social	Arquitecto Técnico		CIF	24280487 P		
Domicilio		Cª Sª Nevada nº 64				
Municipio		Cenes vega	Código Postal 18		18190	
Provincia		Granada	Comunidad Autónoma Andalucía		Andalucía	
e-mail		jguardia@ugr.es				
Titulación habilitante según normativa vigente		Arquitecto Técnico				
Procedimiento reconocido de calificación energética utilizado y versión:		CE ³ X v1.1				

CALIFICACIÓN ENERGÉTICA OBTENIDA:

CALIFICACIÓN ENERGÉTI EMISIONES DE DIÓXIDO E [kgCO ₂ /m ² año	DE CARBONO
< 5.6 A 5.6-9.7 B 9.7-15.9 C 15.9-24.9 D	
24.9-53.2 E 53.2-60.1 F ≥ 60.1 G	205.59 G

El técnico certificador abajo firmante certifica que ha realizado la calificación energética del edificio o de la parte que se certifica de acuerdo con el procedimiento establecido por la normativa vigente y que son ciertos los datos que figuran en el presente documento, y sus anexos:

Fecha: 28/1/2014

Firma del técnico certificador

Anexo I. Descripción de las características energéticas del edificio. Anexo II. Calificación energética del edificio. Anexo III. Recomendaciones para la mejora de la eficiencia energética. Anexo IV. Pruebas, comprobaciones e inspecciones realizadas por el técnico certificador.

Registro del Órgano Territorial Competente:

Fecha Ref. Catastral 28/1/2014 7044301VG4174C0088FM

Página 1 de 6

CERTIFICATION TWO-STOREY TERRACE HOUSE IN GRANADA, 2.000

CERTIFICATION TWO-STOREY TERRACE HOUSE IN GRANADA, 2.000

CERTIFICADO DE EFICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES

IDENTIFICACIÓN DEL EDIFICIO O DE LA PARTE QUE SE CERTIFICA: Nombre del edificio VIVIENDA ADOSADA Dirección CALLE ZAHAREÑA №10 Municipio Granada Código Postal 18009 Provincia Granada **Comunidad Autónoma** Andalucía Zona climática C3 Año construcción 2006 Normativa vigente (construcción / rehabilitación) NBE-CT-79 8239801VG4183G0018KB Referencia/s catastral/es

Tipo de e	dificio o parte del edificio que se certifica:
Vivienda	o Terciario
 Unifamiliar 	o Edificio completo
o Bloque	o Local
o Bloque completo	
 Vivienda individual 	

DATOS DEL TÉCNICO CERTIFICADOR:

Nombre y Apellidos	JOSÉ GUARDA	JOSÉ GUARDA OLMEDO		NIF	24280487P
Razón social	JOSÉ GUARDIA	JOSÉ GUARDIA OLMEDO		CIF	24280487P
Domicilio C/ ZAHAREÑA Nº10					
Municipio		GRANADA	Código Pos	Código Postal	
Provincia		Granada	Comunidad	Comunidad Autónoma Andal	
e-mail		jguardia@ugr.es			
Titulación habilitante según normativa vigente		ARQUITECTO TÉCNICO			
Procedimiento reconocido de calificación energética utilizado y versión:			CE3X v1.1		

CALIFICACIÓN ENERGÉTICA OBTENIDA:

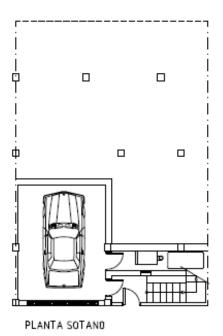
CALIFICACIÓN ENER EMISIONES DE DIÓXI	DO DE CARBONO
[kgCO ₂ /m	² año]
< 8.2 A	
8.2-14.2 B	
4,2-23.3. C	
ma-tai E	
1.0-94.0	77.84 F
e 91.6 G	

El técnico certificador abajo firmante certifica que ha realizado la calificación energética del edificio o de la parte que se certifica de acuerdo con el procedimiento establecido por la normativa vigente y que son ciertos los datos que figuran en el presente documento, y sus anexos:

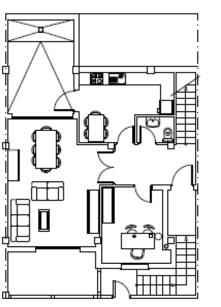
Fecha: 9/7/2013

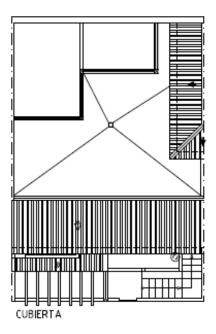
Firma del técnico certificador

Anexo I. Descripción de las características energéticas del edificio. Anexo II. Calificación energética del edificio. Anexo III. Recomendaciones para la mejora de la eficiencia energética. Anexo IV. Pruebas, comprobaciones e inspecciones realizadas por el técnico certificador.

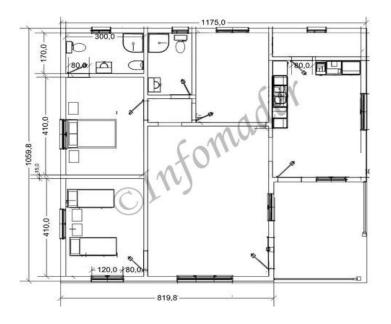

Registro del Órgano Territorial Competente:

Fecha Ref. Catastral 9/7/2013 8239801VG4183G0018KB


Página 1 de 7


CERTIFICATION TWO-STOREY TERRACE HOUSE IN GRANADA, 2.000

PLANTA ALTA



PLANTA BAJA

CURRENT WOOD HOUSE. 2.000

Ana Model 78 m2 useful square meters

CERTIFICADO DE EFICIENCIA ENERGÉTICA DE EDIFICIOS EXISTENTES

IDENTIFICACIÓN DEL EDIFICIO O DE LA PARTE QUE SE CERTIFICA:

Nombre del edificio	CASA DE MADERA			
Dirección	ALPUJARRA			
Municipio	Baza	Código Postal	18416	
Provincia	Granada	Comunidad Autónoma	Andalucía	
Zona climática	C3	Año construcción	2014	
Normativa vigente (construcción / rehabilitación)	C.T.E.			
Referencia/s catastral/es	1803A005002120001ZR			

Tipo de e	dificio o parte del edificio que se certifica:	_
Vivienda	o Terciario	
Unifamiliar	o Edificio completo	
o Bloque	o Local	
o Bloque completo		
o Vivienda individual		_

DATOS DEL TÉCNICO CERTIFICADOR:

Nombre y Apellidos	JOSE GUARDIA	JOSE GUARDIA OLMEDO		NIF	24280487
Razón social	Particular	Particular		CIF	24280487 P
Domicilio Cª Sª NEVADA 64		Cª Sª NEVADA 64			
Municipio		CENES VEGA	Código Postal 1		18190
Provincia		Granada	Comunidad	Autónon	na Andalucía
e-mail		jguardia@ugr.es			
Titulación habilitante según normativa vigente		Arquitecto T.			
Procedimiento reconocido	de calificación energét	ica utilizado y versión:	CE3X v1.1		

CALIFICACIÓN ENERGÉTICA OBTENIDA:

CALIFICACIÓN ENER EMISIONES DE DIÓXI [kgCO ₂ /m	DO DE CARBONO
8.2 A	
nal-And	66.56 E
SPLC G	

El técnico certificador abajo firmante certifica que ha realizado la calificación energética del edificio o de la parte que se certifica de acuerdo con el procedimiento establecido por la normativa vigente y que son ciertos los datos que figuran en el presente documento, y sus anexos:

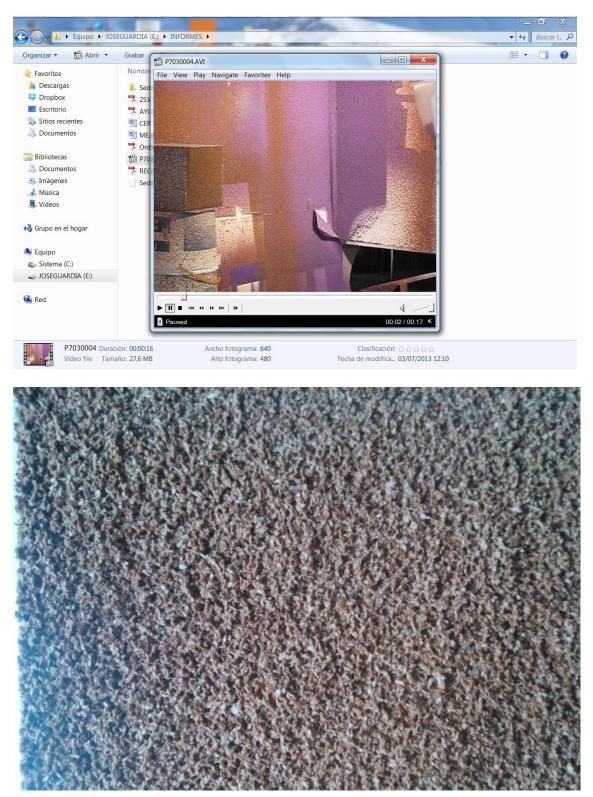
Fecha: 29/1/2014

Firma del técnico certificador

Anexo I. Descripción de las características energéticas del edificio. Anexo II. Calificación energética del edificio. Anexo III. Recomendaciones para la mejora de la eficiencia energética. Anexo IV. Pruebas, comprobaciones e inspecciones realizadas por el técnico certificador.

Registro del Órgano Territorial Competente:

Fecha Ref. Catastral 29/1/2014 1803A005002120001ZR


Página 1 de 6

Escuela Técnica Superior de Edificación, Avda. Severo Ochoa s/n 18071 Granada

26

PHOTOGRAPHS OF MATERIAL: APLICATION AND DETAILS OF TEXTURE

CONCLUSIONS AND FINAL RESULTS

Based on laboratory test: AIDICO (Technological Institute Building), Valencia, concerning the Conductivity of Suber-Kolmer material, we proceeded to check with the CE3-x program of the Ministry of Industry, the effect of improving thermalTransmission t, (U), in three different housing types and demonstrated the enhancement of its value.

The recommended application is three millimeters thick cork, on the surface of interior walls of any material.

U values, in these houses which have declined in all examples, especially in the old buildings of solid brick walls, with and without air cavities.

The percentages of these values are highly variable, due to the heterogeneity of the layers that make up the enclosure, so the values have ranged from 39% maximum value to the lowest values of 5%, and 1% in roofs.

When it comes to wooden pine enclosures, the value of improvement of Energy Transmission: U, is approximately: (20'00%) -.

In Granada, 17 February 2014

Author:

BIBLIOGRAPHY CONSULTED

Technical Building Code "CODIGO TÉCNICO DE LA EDIFICACIÓN (CTE)". 2006, in sections

- DB-HS (Documento Básico de Salubridad)/Basic Document of Sanitation
- **DB-HR** (*Documento Básico de protección frente al Ruido/*) Basic Document of protection against noise: It was adopted after the other Basic Documents

DB-HE (*Documento Básico de Ahorro de Energía*/ Basic Energy Saving Document): The legislation requires introduction of solar energy system and the use of materials and construction techniques that contribute to energy saving.

AND THE CATALOG OF BUILDING CONSTRUCTION ELEMENTS

Qualification Program of Energy Efficiency for Existing Buildings (CE-3)

The development of this procedure has been commissioned by the Institute for Energy Diversification and Saving) under the provisions of the draft Royal Decree on Energy Certification of Buildings, the team consists of:

- APPLUS NORCONTROL SLU (APPLUS)energy efficiencyUnit
- Elisa Castaño Alarcón; Margarita Hernández Díez; Luisa Fernanda Rodríguez Cuadrado; Pilar López Sánchez;

Iván Ruelas Cerda

- · Thermotechnical Group of AICIA University of Sevilla
- Servando Álvarez Domínguez; José Luis Molina Félix;
 José Manuel Salmerón Lissén; José Sánchez Ramos;
 Rafael Salmerón Lissén;
 Manuela Gordillo Bellido; Raúl García Blanco; Miguel Puig García;
 Juan Francisco Coronel Toro; Luis Pérez Lombrard Martín de Oliva;
- · Group of Thermic Engineering University of Cádiz(UCA)
- · Francisco José Sanchez de la Flor; Pilar Monsalvete Álvarez de Uribarri;
- Institut Ildefons Cerdá, Private Foundation (I. CERDÁ): Elisabet Viladomiú; César Muñoz
- Unit of Quality in Construction. Institute Eduardo Torroja (IETcc) José Antonio Tenorio Rios (Responsable); Fernando Martín-Consuegra Ávila; Maria Jesús Gavira Galocha; Germán de Diego Aguado; Daniel Jiménez Gonzalez; Virginia Sánchez Ramos
- · Unit of Building and Land Planning, Foundation Labein (LABEIN) José Antonio Sánchez de Sancha; José Maria Campos; Olga Macías
- REPSOL-Technology Direction Ismael Vela Morejón (Centro Tecnológico Repsol); Miguel Angel Muñecas Vidal (Centro Tecnológico Repsol) Ignacio Leiva Pozo (Repsol Butano)
- This team has benefited from the participation of the following advisers:
- · Margarita de Luxán (Polytechnic University of Madrid), Gloria Gómez y Emilia
- Román.- Adviser in construction and rehabilitation
- Ramón Velázquez (Consulting Engineer).- Adviser on audit methodology and caracterization of heating and refreigerating installations.
- · Alberto Viti (Consulting Engineer).- Adviser on installations and RITE.
- · Rafael Guzmán (University of Málaga).- Adviser on lighting installations.
- The software application uses library code graphing VTK version 4.2 under the license described in http://www.kitware.com/Copyright.htm

The implementation of the UNE-EN 16001 certification and allows cost savings and creates a differentiating effect against other standards and is compatible with the international standard ISO 50001, Energy Management System, which will soon be available